4k^2+1=3k^2+5

Simple and best practice solution for 4k^2+1=3k^2+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4k^2+1=3k^2+5 equation:



4k^2+1=3k^2+5
We move all terms to the left:
4k^2+1-(3k^2+5)=0
We get rid of parentheses
4k^2-3k^2-5+1=0
We add all the numbers together, and all the variables
k^2-4=0
a = 1; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·1·(-4)
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4}{2*1}=\frac{-4}{2} =-2 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4}{2*1}=\frac{4}{2} =2 $

See similar equations:

| 4.8-2.7x=8-5.2x | | 6x^2-3x=-8 | | 1/4d-2=-1.2 | | 5x^2=2(4-7x) | | 2x+5x+3x=30+4,50+2 | | 4x-10=2x+4+x | | 1/4d+6=-2 | | 6x-24=x+1 | | 12=4(a+3) | | 5x^2=2(4-6x) | | 42/25=18/x | | -14=2(m-10) | | 45=9(j-5) | | -28=-9+8(a+6) | | 7(q-7)=-35 | | 10(u-8)=-70 | | 9=3(b-2) | | -5=5(g-9) | | 3t²+3t-168=0 | | 8(c+1)=80 | | -6z+7+3z=25 | | x-56=57 | | 6t^2-3t-5=3t^2+11t | | 2x^2+1x-8x-4=0 | | (-2/3)*x=6 | | 2x^2+1x+8x-4=0 | | (5x+10)(3x-9)=0 | | -22-3x=6(5x+4) | | (5÷6)x=40 | | 5-(x+2)=2(2-x) | | 3/5xx=21 | | 10(y-2)=2(y+4) |

Equations solver categories